Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Int J Med Sci ; 21(4): 703-713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464833

RESUMO

Background: Renal anaemia and left ventricular hypertrophy are the main complications of chronic kidney disease and are shared among dialysis patients. This retrospective study aimed to compare the efficacies of the hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat and recombinant human erythropoietin in reversing ventricular remodeling in dialysis patients with renal anaemia. Methods: A total of 204 participants underwent baseline examinations, including echocardiograms and laboratory tests, before being administered either treatment for at least 24 weeks from January 2018 to October 2021, after which follow-up examinations were conducted at 6 months. Propensity score matching based on key variables included age, gender, cardiovascular diseases, cardiovascular medications, dialysis course and the vascular access at baseline was performed to include populations with similar characteristics between groups. Results: In total, 136 patients were included with roxadustat or recombinant human erythropoietin. The left ventricular mass index after treatment with roxadustat and recombinant human erythropoietin both significantly decreased after 6 months, but there was no significant difference in the change in left ventricular mass index between the two groups. In addition, the left ventricular end-diastolic diameters and left ventricular wall thickness, systolic blood pressure, and diastolic blood pressure significantly decreased in the roxadustat group. Roxadustat and recombinant human erythropoietin also increased haemoglobin significantly, but there was no significant difference in the change in haemoglobin between the two groups. The results of multiple linear regression showed that the change in haemoglobin was independent factor affecting the improvement of left ventricular mass index. Conclusions: The increase of haemoglobin was associated with improving left ventricular hypertrophy in dialysis patients. However, the beneficial effects between roxadustat and recombinant human erythropoietin on left ventricular mass index did not show clear superiority or inferiority in six months.


Assuntos
Anemia , Eritropoetina , Insuficiência Renal Crônica , Humanos , Anemia/tratamento farmacológico , Anemia/etiologia , Eritropoetina/uso terapêutico , Glicina/uso terapêutico , Hemoglobinas/análise , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Isoquinolinas/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Estudos Retrospectivos , Remodelação Ventricular
2.
BMC Nephrol ; 25(1): 72, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413872

RESUMO

BACKGROUND: Diabetic nephropathy (DN) and atherosclerosis (AS) are prevalent and severe complications associated with diabetes, exhibiting lesions in the basement membrane, an essential component found within the glomerulus, tubules, and arteries. These lesions contribute significantly to the progression of both diseases, however, the precise underlying mechanisms, as well as any potential shared pathogenic processes between them, remain elusive. METHODS: Our study analyzed transcriptomic profiles from DN and AS patients, sourced from the Gene Expression Omnibus database. A combination of integrated bioinformatics approaches and machine learning models were deployed to identify crucial genes connected to basement membrane lesions in both conditions. The role of integrin subunit alpha M (ITGAM) was further explored using immune infiltration analysis and genetic correlation studies. Single-cell sequencing analysis was employed to delineate the expression of ITGAM across different cell types within DN and AS tissues. RESULTS: Our analyses identified ITGAM as a key gene involved in basement membrane alterations and revealed its primary expression within macrophages in both DN and AS. ITGAM was significantly correlated with tissue immune infiltration within these diseases. Furthermore, the expression of genes encoding core components of the basement membrane was influenced by the expression level of ITGAM. CONCLUSION: Our findings suggest that macrophages may contribute to basement membrane lesions in DN and AS through the action of ITGAM. Moreover, therapeutic strategies that target ITGAM may offer potential avenues to mitigate basement membrane lesions in these two diabetes-related complications.


Assuntos
Aterosclerose , Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/patologia , Membrana Basal/metabolismo , Glomérulos Renais/patologia , Aterosclerose/complicações , Macrófagos/metabolismo , Diabetes Mellitus/metabolismo , Antígeno CD11b/metabolismo
3.
Acta Pharmacol Sin ; 45(2): 366-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770579

RESUMO

Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1ß in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Sirtuína 1/metabolismo , Nefropatias Diabéticas/patologia , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Simulação de Acoplamento Molecular , Rim/patologia , Fatores de Transcrição/metabolismo , Metabolismo dos Lipídeos , Glucose/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Ligases/metabolismo , Lipídeos
4.
Clin Nephrol ; 101(3): 101-108, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126194

RESUMO

BACKGROUND: Systemic inflammatory indicators are important in the prognoses of various diseases. Such indicators, including the neutrophil-to-lymphocyte ratio (NLR), can be meaningful in predicting the clinical outcome in patients diagnosed with idiopathic membranous nephropathy (IMN). MATERIALS AND METHODS: 112 IMN patients diagnosed by renal biopsy were recruited retrospectively. The endpoint was defined as a combination of partial and complete remission. Statistical analysis determined the independent factors associated with clinical remission and the predictive utility of NLR. RESULTS: Within the 12-month follow-up period, 72 patients achieved clinical remission after treatment. Univariate analysis identified significant differences in serum albumin, estimated glomerular filtration rate (eGFR), proteinuria, neutrophil count, and NLR between the remission group and the non-remission group (all p < 0.05). Cox proportional hazards indicated that elevated eGFR (HR 1.022, 95% CI (1.009 - 1.035), p = 0.001), lower NLR (HR 0.345, 95% CI (0.237 - 0.501), p = 0.0001), and decreased proteinuria (HR 0.826, 95% CI (0.693 - 0.984), p = 0.032) were protective elements for remission. With an optimal cut-off value of 2.61, the pre-treatment NLR had an excellent ability to identify the remission (area under the curve (AUC), 0.785). Participants were separated into low- and high-NLR groups by using 2.61. Kaplan-Meier survival curves revealed significantly higher remission rates in the lower group (p < 0.0001). CONCLUSION: The NLR is an effective indicator for predicting clinical remission in patients with IMN.


Assuntos
Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Neutrófilos , Estudos Retrospectivos , Linfócitos/patologia , Prognóstico , Proteinúria
5.
J Clin Pathol ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38123970

RESUMO

BACKGROUND: Machine learning (ML) models can help assisting diagnosis by rapidly localising and classifying regions of interest (ROIs) within whole slide images (WSIs). Effective ML models for clinical decision support require a substantial dataset of 'real' data, and in reality, it should be robust, user-friendly and universally applicable. METHODS: WSIs of primary IgAN were collected and annotated. The H-AI-L algorithm which could facilitate direct WSI viewing and potential ROI detection for clinicians was built on the cloud server of matpool, a shared internet-based service platform. Model performance was evaluated using F1-score, precision, recall and Matthew's correlation coefficient (MCC). RESULTS: The F1-score of glomerular localisation in WSIs was 0.85 and 0.89 for the initial and pretrained models, respectively, with corresponding recall values of 0.79 and 0.83, and precision scores of 0.92 and 0.97. Dichotomous differentiation between global sclerotic (GS) and other glomeruli revealed F1-scores of 0.70 and 0.91, and MCC values of 0.55 and 0.87, for the initial and pretrained models, respectively. The overall F1-score of multiclassification was 0.81 for the pretrained models. The total glomerular recall rate was 0.96, with F1-scores of 0.68, 0.56 and 0.26 for GS, segmental glomerulosclerosis and crescent (C), respectively. Interstitial fibrosis/tubular atrophy lesion similarity between the true label and model predictions was 0.75. CONCLUSIONS: Our results underscore the efficacy of the ML integration algorithm in segmenting ROIs in IgAN WSIs, and the internet-based model deployment is in favour of widespread adoption and utilisation across multiple centres and increased volumes of WSIs.

6.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870960

RESUMO

Albuminuria and podocyte injury are the key cellular events in the progression of diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is a nucleocytosolic enzyme responsible for the regulation of metabolic homeostasis in mammalian cells. This study aimed to investigate the possible roles of ACSS2 in kidney injury in DN. We constructed an ACSS2-deleted mouse model to investigate the role of ACSS2 in podocyte dysfunction and kidney injury in diabetic mouse models. In vitro, podocytes were chosen and transfected with ACSS2 siRNA and ACSS2 inhibitor and treated with high glucose. We found that ACSS2 expression was significantly elevated in the podocytes of patients with DN and diabetic mice. ACSS2 upregulation promoted phenotype transformation and inflammatory cytokine expression while inhibiting podocytes' autophagy. Conversely, ACSS2 inhibition improved autophagy and alleviated podocyte injury. Furthermore, ACSS2 epigenetically activated raptor expression by histone H3K9 acetylation, promoting activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Pharmacological inhibition or genetic depletion of ACSS2 in the streptozotocin-induced diabetic mouse model greatly ameliorated kidney injury and podocyte dysfunction. To conclude, ACSS2 activation promoted podocyte injury in DN by raptor/mTORC1-mediated autophagy inhibition.


Assuntos
Acetato-CoA Ligase , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Ligases , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina , Acetato-CoA Ligase/metabolismo
7.
Theranostics ; 13(12): 3988-4003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554279

RESUMO

Rationale: Chronic tubulointerstitial inflammation is a common pathological process in diabetic kidney disease (DKD). However, its underlying mechanism is largely unknown. This study aims at investigating the role of gut microbiota-derived outer membrane vesicles (OMVs) in tubulointerstitial inflammation in DKD. Methods: Gut microbiota in diabetes mellitus rats was manipulated by microbiota depletion and fecal microbiota transplantation to explore its role in tubulointerstitial inflammation. To check the direct effects of OMVs, fecal bacterial extracellular vesicles (fBEVs) were administrated to mice orally and HK-2 cells in vitro. For mechanistic investigations, HK-2 cells were treated with small interfering RNA against caspase-4 and fBEVs pre-neutralized by polymyxin B. Results: By performing gut microbiota manipulation, it was confirmed that gut microbiota mediated tubulointerstitial inflammation in DKD. In diabetic rats, gut microbiota-derived OMVs were increased and were clearly detected in distant renal tubulointerstitium. Diabetic fBEVs directly administered by gavage translocated into tubular epithelial cells and induced tubulointerstitial inflammation and kidney injury. In vitro, OMVs were internalized through various endocytic pathways and triggered cellular inflammatory response. Mechanistically, it was revealed that OMVs-derived lipopolysaccharide induced tubular inflammation, which was mediated by the activation of the caspase-11 pathway. Conclusions: Increased OMVs due to dysbiosis translocated through leaky gut barrier into distant tubulointerstitium and induced cellular inflammation and renal tubulointerstitial injury in DKD. These findings enrich the mechanism understanding of how gut microbiota and its releasing OMVs influence the development and progression of kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Microbioma Gastrointestinal , Ratos , Camundongos , Animais , Nefropatias Diabéticas/patologia , Inflamação , Caspases
8.
Int Urol Nephrol ; 55(2): 355-366, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35931920

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the developed world. Podocyte injury is a critical cellular event involved in the progression of DN. Our previous studies demonstrated that platelet-derived microparticles (PMPs) mediated endothelial injury in diabetic rats. This study aimed to investigate whether PMPs are deposited in podocytes and to assess their potential effects on podocyte injury in DN. METHODS: The deposition of PMPs in podocytes was assessed by immunofluorescent staining and electron microscopy. The changes in renal pathology and ultra-microstructure were assessed by periodic acid-Schiff staining and electron microscopy, respectively. The expression of inflammatory cytokines and extracellular matrix proteins was measured by immuno-histochemical staining and western blot. RESULTS: PMPs were widely deposited in podocytes of glomeruli in diabetic patients and animal models and closely associated with DN progression. Interestingly, aspirin treatment significantly inhibited the accumulation of PMPs in the glomeruli of diabetic rats, alleviated mesangial matrix expansion and fusion of foot processes, and decreased the protein expression of inflammatory cytokines and extracellular matrix secretion. An in vitro study further confirmed the deposition of PMPs in podocytes. Moreover, PMP stimulation induced the phenotypic transition of podocytes through decreased podocin protein expression and increased protein expression of α-SMA and fibronectin, which was correlated with increased production of inflammatory cytokines. CONCLUSION: Our findings demonstrated for the first time that the deposition of PMPs in podocytes contributed to the development of DN.


Assuntos
Micropartículas Derivadas de Células , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Ratos , Animais , Nefropatias Diabéticas/complicações , Podócitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Citocinas/metabolismo
9.
Front Cardiovasc Med ; 9: 911987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176988

RESUMO

Background: Heart failure (HF) is a life-threatening complication of cardiovascular disease. HF patients are more likely to progress to acute kidney injury (AKI) with a poor prognosis. However, it is difficult for doctors to distinguish which patients will develop AKI accurately. This study aimed to construct a machine learning (ML) model to predict AKI occurrence in HF patients. Materials and methods: The data of HF patients from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database was retrospectively analyzed. A ML model was established to predict AKI development using decision tree, random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), and logistic regression (LR) algorithms. Thirty-nine demographic, clinical, and treatment features were used for model establishment. Accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUROC) were used to evaluate the performance of the ML algorithms. Results: A total of 2,678 HF patients were engaged in this study, of whom 919 developed AKI. Among 5 ML algorithms, the RF algorithm exhibited the highest performance with the AUROC of 0.96. In addition, the Gini index showed that the sequential organ function assessment (SOFA) score, partial pressure of oxygen (PaO2), and estimated glomerular filtration rate (eGFR) were highly relevant to AKI development. Finally, to facilitate clinical application, a simple model was constructed using the 10 features screened by the Gini index. The RF algorithm also exhibited the highest performance with the AUROC of 0.95. Conclusion: Using the ML model could accurately predict the development of AKI in HF patients.

10.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166478, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787946

RESUMO

Intestinal microbiota-derived membrane vesicles (MVs) play essential roles in immunomodulation and maintenance of the intestinal micro-ecosystem. The relationship between MVs and chronic kidney disease (CKD) has remained undefined. This review provides a survey of the structure and biological function of different vesicle types and summarizes the possible pathogenic mechanisms mediated by MVs, which may be of great clinical significance in the diagnosis and treatment of chronic kidney disease.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Ecossistema , Humanos
11.
Int J Biol Sci ; 18(1): 96-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975320

RESUMO

Background: G-protein-coupled receptor 43 (GPR43) is a posttranscriptional regulator involved in cholesterol metabolism. This study aimed to investigate the possible roles of GPR43 activation in podocyte lipotoxicity in diabetic nephropathy (DN) and explore the potential mechanisms. Methods: The experiments were conducted by using diabetic GPR43-knockout mice and a podocyte cell culture model. Lipid deposition and free cholesterol levels in kidney tissues were measured by BODIPY staining and quantitative cholesterol assays, respectively. The protein expression of GPR43, LC3II, p62, beclin1, low-density lipoprotein receptor (LDLR) and early growth response protein 1 (EGR1) in kidney tissues and podocytes was measured by real-time PCR, immunofluorescent staining and Western blotting. Results: There were increased LDL cholesterol levels in plasma and cholesterol accumulation in the kidneys of diabetic mice. However, GPR43 gene knockout inhibited these changes. An in vitro study further demonstrated that acetate treatment induced cholesterol accumulation in high glucose-stimulated podocytes, which was correlated with increased cholesterol uptake mediated by LDLR and reduced cholesterol autophagic degradation, as characterized by the inhibition of LC3 maturation, p62 degradation and autophagosome formation. Gene knockdown or pharmacological inhibition of GPR43 prevented these effects on podocytes. Furthermore, GPR43 activation increased extracellular regulated protein kinases 1/2 (ERK1/2) activity and EGR1 expression in podocytes, which resulted in an increase in cholesterol influx and autophagy inhibition. In contrast, after GPR43 deletion, these changes in podocytes were improved, as shown by the in vivo and in vitro results. Conclusion: GPR43 activation-mediated lipotoxicity contributes to podocyte injury in DN by modulating the ERK/EGR1 pathway.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Podócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Receptores de LDL/metabolismo
12.
Theranostics ; 11(11): 5248-5266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859745

RESUMO

Mesenchymal stem cells-derived exosomes (MSC-exos) have attracted great interest as a cell-free therapy for acute kidney injury (AKI). However, the in vivo biodistribution of MSC-exos in ischemic AKI has not been established. The potential of MSC-exos in promoting tubular repair and the underlying mechanisms remain largely unknown. Methods: Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to characterize the properties of human umbilical cord mesenchymal stem cells (hucMSCs) derived exosomes. The biodistribution of MSC-exos in murine ischemia/reperfusion (I/R) induced AKI was imaged by the IVIS spectrum imaging system. The therapeutic efficacy of MSC-exos was investigated in renal I/R injury. The cell cycle arrest, proliferation and apoptosis of tubular epithelial cells (TECs) were evaluated in vivo and in HK-2 cells. The exosomal miRNAs of MSC-exos were profiled by high-throughput miRNA sequencing. One of the most enriched miRNA in MSC-exos was knockdown by transfecting miRNA inhibitor to hucMSCs. Then we investigated whether this candidate miRNA was involved in MSC-exos-mediated tubular repair. Results:Ex vivo imaging showed that MSC-exos was efficiently homing to the ischemic kidney and predominantly accumulated in proximal tubules by virtue of the VLA-4 and LFA-1 on MSC-exos surface. MSC-exos alleviated murine ischemic AKI and decreased the renal tubules injury in a dose-dependent manner. Furthermore, MSC-exos significantly attenuated the cell cycle arrest and apoptosis of TECs both in vivo and in vitro. Mechanistically, miR-125b-5p, which was highly enriched in MSC-exos, repressed the protein expression of p53 in TECs, leading to not only the up-regulation of CDK1 and Cyclin B1 to rescue G2/M arrest, but also the modulation of Bcl-2 and Bax to inhibit TEC apoptosis. Finally, inhibiting miR-125b-5p could mitigate the protective effects of MSC-exos in I/R mice. Conclusion: MSC-exos exhibit preferential tropism to injured kidney and localize to proximal tubules in ischemic AKI. We demonstrate that MSC-exos ameliorate ischemic AKI and promote tubular repair by targeting the cell cycle arrest and apoptosis of TECs through miR-125b-5p/p53 pathway. This study provides a novel insight into the role of MSC-exos in renal tubule repair and highlights the potential of MSC-exos as a promising therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda/genética , Exossomos/genética , Túbulos Renais Proximais/fisiologia , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética , Traumatismo por Reperfusão/genética , Proteína Supressora de Tumor p53/genética , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose/genética , Proteína Quinase CDC2/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Linhagem Celular , Proliferação de Células/genética , Ciclina B1/genética , Células Epiteliais/fisiologia , Fase G2/genética , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/genética , Traumatismo por Reperfusão/fisiopatologia , Distribuição Tecidual/genética , Proteína X Associada a bcl-2/genética
13.
Theranostics ; 11(10): 4728-4742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754024

RESUMO

Rationale: Albuminuria is an early clinical feature in the progression of diabetic nephropathy (DN). Podocyte insulin resistance is a main cause of podocyte injury, playing crucial roles by contributing to albuminuria in early DN. G protein-coupled receptor 43 (GPR43) is a metabolite sensor modulating the cell signalling pathways to maintain metabolic homeostasis. However, the roles of GPR43 in podocyte insulin resistance and its potential mechanisms in the development of DN are unclear. Methods: The experiments were conducted by using kidney tissues from biopsied DN patients, streptozotocin (STZ) induced diabetic mice with or without global GPR43 gene knockout, diabetic rats treated with broad-spectrum oral antibiotics or fecal microbiota transplantation, and cell culture model of podocytes. Renal pathological injuries were evaluated by periodic acid-schiff staining and transmission electron microscopy. The expression of GPR43 with other podocyte insulin resistance related molecules was checked by immunofluorescent staining, real-time PCR, and Western blotting. Serum acetate level was examined by gas chromatographic analysis. The distribution of gut microbiota was measured by 16S ribosomal DNA sequencing with faeces. Results: Our results demonstrated that GPR43 expression was increased in kidney samples of DN patients, diabetic animal models, and high glucose-stimulated podocytes. Interestingly, deletion of GPR43 alleviated albuminuria and renal injury in diabetic mice. Pharmacological inhibition and knockdown of GPR43 expression in podocytes increased insulin-induced Akt phosphorylation through the restoration of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activity. This effect was associated with the suppression of AMPKα activity through post-transcriptional phosphorylation via the protein kinase C-phospholipase C (PKC-PLC) pathway. Antibiotic treatment-mediated gut microbiota depletion, and faecal microbiota transplantation from the healthy donor controls substantially improved podocyte insulin sensitivity and attenuated glomerular injury in diabetic rats accompanied by the downregulation of the GPR43 expression and a decrease in the level of serum acetate. Conclusion: These findings suggested that dysbiosis of gut microbiota-modulated GPR43 activation contributed to albuminuria in DN, which could be mediated by podocyte insulin resistance through the inhibition of AMPKα activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Disbiose/genética , Resistência à Insulina/genética , Podócitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Adulto , Idoso , Animais , Nefropatias Diabéticas/metabolismo , Disbiose/metabolismo , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Ratos , Receptores de Superfície Celular/genética , Adulto Jovem
14.
Front Immunol ; 12: 796383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082785

RESUMO

Background: Lipid metabolism disorder, as one major complication in patients with chronic kidney disease (CKD), is tied to an increased risk for cardiovascular disease (CVD). Traditional lipid-lowering statins have been found to have limited benefit for the final CVD outcome of CKD patients. Therefore, the purpose of this study was to investigate the effect of microinflammation on CVD in statin-treated CKD patients. Methods: We retrospectively analysed statin-treated CKD patients from January 2013 to September 2020. Machine learning algorithms were employed to develop models of low-density lipoprotein (LDL) levels and CVD indices. A fivefold cross-validation method was employed against the problem of overfitting. The accuracy and area under the receiver operating characteristic (ROC) curve (AUC) were acquired for evaluation. The Gini impurity index of the predictors for the random forest (RF) model was ranked to perform an analysis of importance. Results: The RF algorithm performed best for both the LDL and CVD models, with accuracies of 82.27% and 74.15%, respectively, and is therefore the most suitable method for clinical data processing. The Gini impurity ranking of the LDL model revealed that hypersensitive C-reactive protein (hs-CRP) was highly relevant, whereas statin use and sex had the least important effects on the outcomes of both the LDL and CVD models. hs-CRP was the strongest predictor of CVD events. Conclusion: Microinflammation is closely associated with potential CVD events in CKD patients, suggesting that therapeutic strategies against microinflammation should be implemented to prevent CVD events in CKD patients treated by statin.


Assuntos
Doenças Cardiovasculares/imunologia , Inflamação/imunologia , Aprendizado de Máquina , Insuficiência Renal Crônica/imunologia , Idoso , Proteína C-Reativa/análise , Doenças Cardiovasculares/complicações , Colesterol/metabolismo , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inflamação/complicações , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Estudos Retrospectivos , Fatores de Risco
15.
Theranostics ; 10(6): 2803-2816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194836

RESUMO

Background: Our previous study demonstrated that the disruption of cholesterol homeostasis promotes tubulointerstitial injury in diabetic nephropathy (DN). This study aimed to further investigate the effects of gut microbiota dysbiosis on this process and explored its potential mechanism. Methods: Diabetic rats treated with broad-spectrum oral antibiotics or faecal microbiota transplantation (FMT) from the healthy donor group and human kidney 2 (HK-2) cells stimulated with sodium acetate were used to observe the effects of gut microbiota on cholesterol homeostasis. The gut microbiota distribution was measured by 16S rDNA sequencing with faeces. Serum acetate level was examined by gas chromatographic analysis. Protein expression of G protein coupled receptor 43 (GPR43) and molecules involved in cholesterol homeostasis were assessed by immunohistochemical staining, immunofluorescence staining, and Western Blotting. Results: Depletion of gut microbiota significantly attenuated albuminuria and tubulointerstitial injury. Interestingly, serum acetate levels were also markedly decreased in antibiotics-treated diabetic rats and positively correlated with the cholesterol contents in kidneys. An in vitro study demonstrated that acetate significantly increased cholesterol accumulation in HK-2 cells, which was caused by increased expression of proteins mainly modulating cholesterol synthesis and uptake. As expected, FMT effectively decreased serum acetate levels and alleviated tubulointerstitial injury in diabetic rats through overriding the disruption of cholesterol homeostasis. Furthermore, GPR43 siRNA treatment blocked acetate-mediated cholesterol homeostasis dysregulation in HK-2 cells through decreasing the expression of proteins governed cholesterol synthesis and uptake. Conclusion: Our studies for the first time demonstrated that the acetate produced from gut microbiota mediated the dysregulation of cholesterol homeostasis through the activation of GPR43, thereby contributing to the tubulointerstitial injury of DN, suggesting that gut microbiota reprogramming might be a new strategy for DN prevention and therapy.


Assuntos
Colesterol/metabolismo , Nefropatias Diabéticas , Disbiose , Microbioma Gastrointestinal , Nefrite Intersticial , Acetatos/sangue , Animais , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Homeostase , Humanos , Masculino , Nefrite Intersticial/metabolismo , Nefrite Intersticial/microbiologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
16.
Acta Pharmacol Sin ; 41(8): 1111-1118, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203081

RESUMO

Some studies have shown that gut microbiota along with its metabolites is closely associated with diabetic mellitus (DM). In this study we explored the relationship between gut microbiota and kidney injuries of early diabetic nephropathy (DN) and its underlying mechanisms. Male SD rats were intraperitoneally injected with streptozotocin to induce DM. DM rats were orally administered compound broad-spectrum antibiotics for 8 weeks. After the rats were sacrificed, their blood, urine, feces, and renal tissues were harvested for analyses. We found that compared with the control rats, DM rats had abnormal intestinal microflora, increased plasma acetate levels, increased proteinuria, thickened glomerular basement membrane, and podocyte foot process effacement in the kidneys. Furthermore, the protein levels of angiotensin II, angiotensin-converting enzyme, and angiotensin II type 1 receptor in the kidneys of DM rats were significantly increased. Administration of broad-spectrum antibiotics in DM rats not only completely killed most intestinal microflora, but also significantly lowered the plasma acetate levels, inhibited intrarenal RAS activation, and attenuated kidney damage. Finally, we showed that plasma acetate levels were positively correlated with intrarenal angiotensin II protein expression (r = 0.969, P < 0.001). In conclusion, excessive acetate produced by disturbed gut microbiota might be involved in the kidney injuries of early DN through activating intrarenal RAS.


Assuntos
Acetatos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Disbiose/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Sistema Renina-Angiotensina/fisiologia , Acetatos/sangue , Animais , Antibacterianos/farmacologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/patologia , Masculino , Ratos Sprague-Dawley
17.
Metab Syndr Relat Disord ; 18(4): 206-211, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32069163

RESUMO

Introduction: Hyperuricemia has been associated with increased cardiovascular events in the general population. However, the role of serum uric acid (SUA) level on the severity of coronary artery stenosis (CAS) in nondialysis chronic kidney disease (CKD) patients is obscure. Methods: We implement a retrospective cohort study of 734 patients diagnosed with stage 3-5 CKD. All selected patients underwent coronary artery angiography. The associations of SUA with the present, and severity of coronary artery disease (CAD) were analyzed. Results: Of these 734 patients, 511 patients had angiographically proven CAD. Compared with non-CAD group, the SUA level in CAD group was much higher (388.00 vs. 363.00 µmol/l, P < 0.01). After adjusting for multiple confounding factors, a multivariate logistic regression analysis demonstrated that SUA was relevant to the presence of CAD when SUA as a continuous variable. However, this relationship was not observed with SUA as a categorical variable. In a subgroup analysis for the CAD group, we found that the rates of severe CAS in the third tertile of SUA (58.6%) was higher than that in the first tertile (41.6%) (P < 0.01). Compared with the first tertile of SUA, the third tertile of SUA was an independent risk factor for severe arterial stenosis (odds ratio, OR, 1.976 [1.203-3.248]), a pattern that was recapitulated by multivariate logistic regression analysis with SUA as a continuous variable (1.002 [1.000-1.004]). Conclusions: The SUA level may serve as a predictor of the severity of CAS among nondialysis CKD patients with CAD.


Assuntos
Doença da Artéria Coronariana/sangue , Insuficiência Renal Crônica/sangue , Ácido Úrico/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , China , Estudos de Coortes , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/patologia , Feminino , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/patologia , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
18.
Ann Transl Med ; 7(18): 445, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700881

RESUMO

BACKGROUND: Podocyte-derived microparticles (MPs) could be secreted from activated or apoptotic podocytes. An increased number of podocyte-derived MPs in the urine might reflect podocyte injury in renal diseases. This study aimed to observe the change of urinary podocyte-derived MP levels in patients with chronic kidney disease (CKD) and to further explore its correlation with the progression of CKD. METHODS: A prospective, longitudinal study was conducted in eighty patients with biopsy-proven CKD. Podocyte-derived MPs (annexin V and podocalyxin positive) were detected by flow cytometry. The number of urinary podocyte-derived MPs was analyzed to evaluate the association with biochemical measurements and pathological glomerulosclerosis assessment. Patients with idiopathic membranous nephropathy (IMN) were followed up after the six-month treatment of prednisone combined with tacrolimus to evaluate the association of urinary podocyte-derived MP levels and the remission of IMN. RESULTS: The CKD patients had higher urinary podocyte-derived MP levels compared with healthy controls (HCs). Baseline urinary levels of podocyte-derived MPs were positively correlated with 24-hour proteinuria, while were inversely correlated with the percentage of global glomerulosclerosis. The urinary podocyte-derived MPs levels had good discrimination for glomerulosclerosis [area under curve (AUC), 0.66]. The urinary podocyte-derived MPs levels in IMN patients were significantly decreased accompanied with the recovery of abnormal clinical parameters after six-month treatment. CONCLUSIONS: The urinary levels of podocyte-derived MPs were closely associated with podocyte injury and glomerulosclerosis, which could be useful for monitoring disease activity in CKD patients. Urinary podocyte-derived MPs might be a non-invasive biomarker for the evaluation of early CKD progression.

19.
Adv Exp Med Biol ; 1165: 195-232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31399967

RESUMO

Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.


Assuntos
Glomerulosclerose Segmentar e Focal/fisiopatologia , Podócitos/citologia , Podócitos/patologia , Humanos , Hipertensão , Inflamação , Transtornos do Metabolismo dos Lipídeos , Proteinúria
20.
BMC Nephrol ; 20(1): 303, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382919

RESUMO

BACKGROUND: New non-invasive biomarkers are demanded to identify renal damage in various autoimmune-associated kidney diseases. Glomerular podocyte damage mediated by systemic lupus erythematosus (SLE) plays an important role in the pathogenesis and progression of lupus nephritis (LN). This study evaluated whether the podocyte-derived microparticles (MPs) were novel biomarkers of clinical and histological features in SLE patients with LN. METHODS: A cross-sectional study, including 34 SLE patients and 16 healthy controls, was designed. Urinary annexin V+ podocalyxin+ MPs of all participants were quantified by flow cytometry. The correlation of podocyte-derived MPs with clinical and histological parameters of SLE patients was analysed. RESULTS: The number of annexin V+ podocalyxin+ MPs from urine samples were markly increased in patients with SLE. Furthermore, the level of urinary podocyte-derived MPs was positively correlated with the SLE Disease Activity Index (SLEDAI) score, anti-dsDNA antibody titre, erythrocyte sedimentation rate, and proteinuria. Conversely, it was negatively correlated with the level of complement C3 and serum albumin. The number of urinary podocyte-derived MPs was significantly increased in SLE patients with high activity indices. Receiver operating characteristic (ROC) curves were calculated to assess the power for podocyte-derived MP levels in differentiating between SLE patients with and without LN. Podocyte-derived MP levels were able to differentiate between SLE patients with mild disease activity, as well as those with moderate and above disease activity. SLE patients showed increased podocyte-derived MP excretion into the urine. CONCLUSIONS: These findings suggest that the change in urinary podocyte-derived MP levels could be useful for evaluating and monitoring SLE disease activity.


Assuntos
Micropartículas Derivadas de Células , Lúpus Eritematoso Sistêmico/urina , Podócitos , Anexina A5 , Estudos de Casos e Controles , Micropartículas Derivadas de Células/patologia , Distribuição de Qui-Quadrado , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/patologia , Nefrite Lúpica/urina , Masculino , Pessoa de Meia-Idade , Podócitos/química , Podócitos/patologia , Podócitos/ultraestrutura , Curva ROC , Sialoglicoproteínas , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...